Copied to
clipboard

G = C325D16order 288 = 25·32

2nd semidirect product of C32 and D16 acting via D16/C16=C2

metabelian, supersoluble, monomial

Aliases: C481S3, C31D48, C6.7D24, C325D16, C24.72D6, C12.43D12, (C3×C48)⋊1C2, C161(C3⋊S3), (C3×C6).23D8, C325D81C2, (C3×C12).118D4, C4.1(C12⋊S3), C2.3(C325D8), (C3×C24).50C22, C8.13(C2×C3⋊S3), SmallGroup(288,274)

Series: Derived Chief Lower central Upper central

C1C3×C24 — C325D16
C1C3C32C3×C6C3×C12C3×C24C325D8 — C325D16
C32C3×C6C3×C12C3×C24 — C325D16
C1C2C4C8C16

Generators and relations for C325D16
 G = < a,b,c,d | a3=b3=c16=d2=1, ab=ba, ac=ca, dad=a-1, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 712 in 84 conjugacy classes, 33 normal (11 characteristic)
C1, C2, C2, C3, C4, C22, S3, C6, C8, D4, C32, C12, D6, C16, D8, C3⋊S3, C3×C6, C24, D12, D16, C3×C12, C2×C3⋊S3, C48, D24, C3×C24, C12⋊S3, D48, C3×C48, C325D8, C325D16
Quotients: C1, C2, C22, S3, D4, D6, D8, C3⋊S3, D12, D16, C2×C3⋊S3, D24, C12⋊S3, D48, C325D8, C325D16

Smallest permutation representation of C325D16
On 144 points
Generators in S144
(1 126 39)(2 127 40)(3 128 41)(4 113 42)(5 114 43)(6 115 44)(7 116 45)(8 117 46)(9 118 47)(10 119 48)(11 120 33)(12 121 34)(13 122 35)(14 123 36)(15 124 37)(16 125 38)(17 105 58)(18 106 59)(19 107 60)(20 108 61)(21 109 62)(22 110 63)(23 111 64)(24 112 49)(25 97 50)(26 98 51)(27 99 52)(28 100 53)(29 101 54)(30 102 55)(31 103 56)(32 104 57)(65 87 141)(66 88 142)(67 89 143)(68 90 144)(69 91 129)(70 92 130)(71 93 131)(72 94 132)(73 95 133)(74 96 134)(75 81 135)(76 82 136)(77 83 137)(78 84 138)(79 85 139)(80 86 140)
(1 87 22)(2 88 23)(3 89 24)(4 90 25)(5 91 26)(6 92 27)(7 93 28)(8 94 29)(9 95 30)(10 96 31)(11 81 32)(12 82 17)(13 83 18)(14 84 19)(15 85 20)(16 86 21)(33 75 57)(34 76 58)(35 77 59)(36 78 60)(37 79 61)(38 80 62)(39 65 63)(40 66 64)(41 67 49)(42 68 50)(43 69 51)(44 70 52)(45 71 53)(46 72 54)(47 73 55)(48 74 56)(97 113 144)(98 114 129)(99 115 130)(100 116 131)(101 117 132)(102 118 133)(103 119 134)(104 120 135)(105 121 136)(106 122 137)(107 123 138)(108 124 139)(109 125 140)(110 126 141)(111 127 142)(112 128 143)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 16)(2 15)(3 14)(4 13)(5 12)(6 11)(7 10)(8 9)(17 91)(18 90)(19 89)(20 88)(21 87)(22 86)(23 85)(24 84)(25 83)(26 82)(27 81)(28 96)(29 95)(30 94)(31 93)(32 92)(33 115)(34 114)(35 113)(36 128)(37 127)(38 126)(39 125)(40 124)(41 123)(42 122)(43 121)(44 120)(45 119)(46 118)(47 117)(48 116)(49 138)(50 137)(51 136)(52 135)(53 134)(54 133)(55 132)(56 131)(57 130)(58 129)(59 144)(60 143)(61 142)(62 141)(63 140)(64 139)(65 109)(66 108)(67 107)(68 106)(69 105)(70 104)(71 103)(72 102)(73 101)(74 100)(75 99)(76 98)(77 97)(78 112)(79 111)(80 110)

G:=sub<Sym(144)| (1,126,39)(2,127,40)(3,128,41)(4,113,42)(5,114,43)(6,115,44)(7,116,45)(8,117,46)(9,118,47)(10,119,48)(11,120,33)(12,121,34)(13,122,35)(14,123,36)(15,124,37)(16,125,38)(17,105,58)(18,106,59)(19,107,60)(20,108,61)(21,109,62)(22,110,63)(23,111,64)(24,112,49)(25,97,50)(26,98,51)(27,99,52)(28,100,53)(29,101,54)(30,102,55)(31,103,56)(32,104,57)(65,87,141)(66,88,142)(67,89,143)(68,90,144)(69,91,129)(70,92,130)(71,93,131)(72,94,132)(73,95,133)(74,96,134)(75,81,135)(76,82,136)(77,83,137)(78,84,138)(79,85,139)(80,86,140), (1,87,22)(2,88,23)(3,89,24)(4,90,25)(5,91,26)(6,92,27)(7,93,28)(8,94,29)(9,95,30)(10,96,31)(11,81,32)(12,82,17)(13,83,18)(14,84,19)(15,85,20)(16,86,21)(33,75,57)(34,76,58)(35,77,59)(36,78,60)(37,79,61)(38,80,62)(39,65,63)(40,66,64)(41,67,49)(42,68,50)(43,69,51)(44,70,52)(45,71,53)(46,72,54)(47,73,55)(48,74,56)(97,113,144)(98,114,129)(99,115,130)(100,116,131)(101,117,132)(102,118,133)(103,119,134)(104,120,135)(105,121,136)(106,122,137)(107,123,138)(108,124,139)(109,125,140)(110,126,141)(111,127,142)(112,128,143), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,91)(18,90)(19,89)(20,88)(21,87)(22,86)(23,85)(24,84)(25,83)(26,82)(27,81)(28,96)(29,95)(30,94)(31,93)(32,92)(33,115)(34,114)(35,113)(36,128)(37,127)(38,126)(39,125)(40,124)(41,123)(42,122)(43,121)(44,120)(45,119)(46,118)(47,117)(48,116)(49,138)(50,137)(51,136)(52,135)(53,134)(54,133)(55,132)(56,131)(57,130)(58,129)(59,144)(60,143)(61,142)(62,141)(63,140)(64,139)(65,109)(66,108)(67,107)(68,106)(69,105)(70,104)(71,103)(72,102)(73,101)(74,100)(75,99)(76,98)(77,97)(78,112)(79,111)(80,110)>;

G:=Group( (1,126,39)(2,127,40)(3,128,41)(4,113,42)(5,114,43)(6,115,44)(7,116,45)(8,117,46)(9,118,47)(10,119,48)(11,120,33)(12,121,34)(13,122,35)(14,123,36)(15,124,37)(16,125,38)(17,105,58)(18,106,59)(19,107,60)(20,108,61)(21,109,62)(22,110,63)(23,111,64)(24,112,49)(25,97,50)(26,98,51)(27,99,52)(28,100,53)(29,101,54)(30,102,55)(31,103,56)(32,104,57)(65,87,141)(66,88,142)(67,89,143)(68,90,144)(69,91,129)(70,92,130)(71,93,131)(72,94,132)(73,95,133)(74,96,134)(75,81,135)(76,82,136)(77,83,137)(78,84,138)(79,85,139)(80,86,140), (1,87,22)(2,88,23)(3,89,24)(4,90,25)(5,91,26)(6,92,27)(7,93,28)(8,94,29)(9,95,30)(10,96,31)(11,81,32)(12,82,17)(13,83,18)(14,84,19)(15,85,20)(16,86,21)(33,75,57)(34,76,58)(35,77,59)(36,78,60)(37,79,61)(38,80,62)(39,65,63)(40,66,64)(41,67,49)(42,68,50)(43,69,51)(44,70,52)(45,71,53)(46,72,54)(47,73,55)(48,74,56)(97,113,144)(98,114,129)(99,115,130)(100,116,131)(101,117,132)(102,118,133)(103,119,134)(104,120,135)(105,121,136)(106,122,137)(107,123,138)(108,124,139)(109,125,140)(110,126,141)(111,127,142)(112,128,143), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,91)(18,90)(19,89)(20,88)(21,87)(22,86)(23,85)(24,84)(25,83)(26,82)(27,81)(28,96)(29,95)(30,94)(31,93)(32,92)(33,115)(34,114)(35,113)(36,128)(37,127)(38,126)(39,125)(40,124)(41,123)(42,122)(43,121)(44,120)(45,119)(46,118)(47,117)(48,116)(49,138)(50,137)(51,136)(52,135)(53,134)(54,133)(55,132)(56,131)(57,130)(58,129)(59,144)(60,143)(61,142)(62,141)(63,140)(64,139)(65,109)(66,108)(67,107)(68,106)(69,105)(70,104)(71,103)(72,102)(73,101)(74,100)(75,99)(76,98)(77,97)(78,112)(79,111)(80,110) );

G=PermutationGroup([[(1,126,39),(2,127,40),(3,128,41),(4,113,42),(5,114,43),(6,115,44),(7,116,45),(8,117,46),(9,118,47),(10,119,48),(11,120,33),(12,121,34),(13,122,35),(14,123,36),(15,124,37),(16,125,38),(17,105,58),(18,106,59),(19,107,60),(20,108,61),(21,109,62),(22,110,63),(23,111,64),(24,112,49),(25,97,50),(26,98,51),(27,99,52),(28,100,53),(29,101,54),(30,102,55),(31,103,56),(32,104,57),(65,87,141),(66,88,142),(67,89,143),(68,90,144),(69,91,129),(70,92,130),(71,93,131),(72,94,132),(73,95,133),(74,96,134),(75,81,135),(76,82,136),(77,83,137),(78,84,138),(79,85,139),(80,86,140)], [(1,87,22),(2,88,23),(3,89,24),(4,90,25),(5,91,26),(6,92,27),(7,93,28),(8,94,29),(9,95,30),(10,96,31),(11,81,32),(12,82,17),(13,83,18),(14,84,19),(15,85,20),(16,86,21),(33,75,57),(34,76,58),(35,77,59),(36,78,60),(37,79,61),(38,80,62),(39,65,63),(40,66,64),(41,67,49),(42,68,50),(43,69,51),(44,70,52),(45,71,53),(46,72,54),(47,73,55),(48,74,56),(97,113,144),(98,114,129),(99,115,130),(100,116,131),(101,117,132),(102,118,133),(103,119,134),(104,120,135),(105,121,136),(106,122,137),(107,123,138),(108,124,139),(109,125,140),(110,126,141),(111,127,142),(112,128,143)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9),(17,91),(18,90),(19,89),(20,88),(21,87),(22,86),(23,85),(24,84),(25,83),(26,82),(27,81),(28,96),(29,95),(30,94),(31,93),(32,92),(33,115),(34,114),(35,113),(36,128),(37,127),(38,126),(39,125),(40,124),(41,123),(42,122),(43,121),(44,120),(45,119),(46,118),(47,117),(48,116),(49,138),(50,137),(51,136),(52,135),(53,134),(54,133),(55,132),(56,131),(57,130),(58,129),(59,144),(60,143),(61,142),(62,141),(63,140),(64,139),(65,109),(66,108),(67,107),(68,106),(69,105),(70,104),(71,103),(72,102),(73,101),(74,100),(75,99),(76,98),(77,97),(78,112),(79,111),(80,110)]])

75 conjugacy classes

class 1 2A2B2C3A3B3C3D 4 6A6B6C6D8A8B12A···12H16A16B16C16D24A···24P48A···48AF
order12223333466668812···121616161624···2448···48
size117272222222222222···222222···22···2

75 irreducible representations

dim11122222222
type+++++++++++
imageC1C2C2S3D4D6D8D12D16D24D48
kernelC325D16C3×C48C325D8C48C3×C12C24C3×C6C12C32C6C3
# reps1124142841632

Matrix representation of C325D16 in GL4(𝔽97) generated by

1000
0100
0001
009696
,
0100
969600
0001
009696
,
657800
198400
006839
005829
,
657800
133200
002968
003968
G:=sub<GL(4,GF(97))| [1,0,0,0,0,1,0,0,0,0,0,96,0,0,1,96],[0,96,0,0,1,96,0,0,0,0,0,96,0,0,1,96],[65,19,0,0,78,84,0,0,0,0,68,58,0,0,39,29],[65,13,0,0,78,32,0,0,0,0,29,39,0,0,68,68] >;

C325D16 in GAP, Magma, Sage, TeX

C_3^2\rtimes_5D_{16}
% in TeX

G:=Group("C3^2:5D16");
// GroupNames label

G:=SmallGroup(288,274);
// by ID

G=gap.SmallGroup(288,274);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,85,92,254,142,675,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^16=d^2=1,a*b=b*a,a*c=c*a,d*a*d=a^-1,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽